Clear Labs An automated next-generation sequencing method for simultaneous detection and serotyping of Salmonella directly from enrichments

Atul K. Singh, Andrew Lin, Anay Campos, James Maloney, Adam Allred, Justin Ng, Prasanna Thwar, and Ramin Khaksar

BACKGROUND

From 2017 to 2021, the number of chicken samples that tested positive for Salmonella by USDA-FSIS decreased by 50% (1). Despite significant progress in reducing the prevalence of Salmonella in poultry, the number of Salmonella illnesses has remained consistent at ~15 illnesses/100,000 people in the U.S. (2) Numerous studies have indicated that prevalence alone is not an adequate measure of the risk associated with poultry, and that other variables, such as the Salmonella serotype should be considered. (1, 3, 4, 5). Over 2,600 Salmonella serotypes have been identified to date, and different Salmonella serotypes exhibit varying levels of virulence and pathogenicity (6). CDC estimates that most illnesses are caused by fewer than 100 of these serotypes, with the 20 most prevalent serotypes being responsible for approximately 70% of all Salmonella infections in the U.S. (1). USDA has considered focusing on the Salmonella serotypes that are more likely to cause illness (1) similar to the strategy of designating STEC O serogroups as adulterants in raw beef products (1). One impediment to this shift in strategy is the misperception that there are no affordable, rapid serotyping tests available. Indeed, most current serotyping methods are only capable of analyzing an isolated Salmonella colony, which can take approximately 6 days to obtain. However, automated targeted NGS, such as Clear Safety[™] Salmonella, can provide rapid, affordable, high-throughput serotyping results.

Here we evaluate Clear Safety[™] Salmonella for detection and serotyping accuracy. Clear Safety[™] Salmonella is able to identify the 63 serotypes listed in Table 1. A total of 251 Salmonella and 40 non-Salmonella pure reference cultures were analyzed with Clear Safety[™] Salmonella to evaluate serotyping accuracy. Additionally, chicken carcass rinses were artificially contaminated with 20 different serotypes and pre-enriched in Clear Salmonella Media and analyzed with Clear Safety™ Salmonella to evaluate its ability to accurately serotype from sample enrichments.

Enteritidis	Braenderup	Muenchen	Virchow	Gaminara
Typhimurium	Cerro	Oranienburg	Tennessee	Havana
I 4,[5],12:i:-	Derby	Panama	Liverpool	Idikan
Newport	Dublin	Paratyphi B	Uganda	Lille
Kentucky	Give	Poona	Gallinarum/Pullorum	Pomona
Abaetetuba	Hadar	Reading	Minnesota	Putten
Agona	Heidelberg	Rissen	Ohio	Roodepoort
Alachua	Infantis	Saintpaul	Molade	Muenster
Albany	Javiana	Schwarzengrund	Litchfield	Norwich
Anatum	Johannesburg	Senftenberg	Sandiego	Worthington
Bareilly	Mbandaka	Stanley	Meleagridis	Ouakam
Berta	Mississippi	Thompson	Barranquilla	
Blockley	Montevideo	Typhi	Cubana	

Table 1: List of Identifiable serotypes from Clear Safety™ Salmonella

For more information regarding Clear Safety™ Salmonella, please contact us at inquiries@clearlabs.com

METHODS

Sample Preparation

- 1) Pure Reference Cultures
- a) Salmonella and non-Salmonella reference cultures were collected from various sources: ATCC, American Type culture collection; CLCB, Clear Labs Culture Bank; CLSI, Cornell Life Science Institute; NCTC, National Collection of Type Cultures UK; NZRM, New Zealand Reference Material; BEI resources established by National Institute of Allergy and Infectious Diseases (NIAID); DARPA SAFE, Defense Advanced Research Project Agency Systems and Assays for Food Examination.
- a) All reference cultures were grown in 4 mL of tryptic soy broth (TSB) incubated at 35°C for 16-24 h.
- 1) Artificially Contaminated Chicken Carcass Rinse
- a) Six whole chicken carcasses were rinsed according to USDA Microbiological Laboratory Guidelines 4.13 (7). Whole carcasses were placed in a sterile bag and rinsed by adding 400 ml of sterile buffered peptone water (BPW; Accumedia, Neogen, Lansing, MI) and shaking the bag for 1 min by hand in a rocking motion. Rinsates were removed to new bag with a sterile pipette.
- a) Thirty mL aliquots of carcass rinsates were artificially inoculated with 4 CFU/sample of representative strains from each 20 Salmonella serotypes commonly associated with human-illness (See Table 3)
- a) Inoculated carcass rinsates were mixed with 30 mL of Clear Salmonella Media (CSM; Clear Labs, San Carlos, CA) supplemented with 20 mg/L of novobiocin and incubated for 24h at 35°C).

Clear Safety[™] Salmonella Assay

- 1) Sample Plate Preparation
- a) Remove 50 µL homogenized enriched sample and combine it with 450 µL CL Prep Solution in the sample rack containing the sample tubes.
- a) Load the sample rack, reagents, plates, tips, and flow cell onto the Clear Safety[™] platform according to the manufacturer's instructions.
- a) Start Automated Workflow.

Figure 1: Clear Safety Salmonella

An integrated, end-to-end automated platform for direct detection and serotyping of Salmonella from sample enrichments. Automated workflow includes sample lysis, live and dead sample treatment, PCR, library preparation, sequencing and analytics

^a Detection accuracy: Refers to positive detection of Salmonella genus with Clear Safety[™] Salmonella. ^b Serotyping accuracy: Refers to identification of correct serotype with Clear SafetyTM Salmonella. ^c 62 of the 63 serotypes within the scope of Clear Safety[™] were tested N/A: Not applicable

RESULTS

Table 2: Summary of Clear Safety[™] Salmonella results for Pure **Reference Cultures**

	Number of strains tested	Number of strains correctly identified		Detection	Serotyping			
trains		Salmonella spp.	Serotype	accuracya	accuracyb			
Inclusive strains								
enterica J bsp. Enterica °	206	206	206	100%	100%			
on-claimed erotypes	24	24	N/A	100%	N/A			
enterica ubsp. non- nterica	17	17	N/A	100%	N/A			
bongori	4	4	N/A	100%	N/A			
Exclusive strains (non-targets)								
on-Salmonella	40	0	N/A	0%	N/A			

Table 3: Detection and Serotyping of Salmonella in poultry carcass rinse enrichments ^a using Clear Safety[™] Salmonella

<i>enterica</i> subsp.	Strain ID	Clear Safety™ <i>Salmonella</i> Results		
lenca serolypes		Detection ^b	Serotyping	
Kentucky	ATCC 9263	Positive	Kentucky	
Enteritidis	DARPA SAFE 79	Positive	Enteritidis	
Newport	DARPA SAFE 1	Positive	Newport	
Typhimurium	ATCC 14028	Positive	Typhimurium	
Javiana	ATCC 10721	Positive	Javiana	
I 4,[5],12:i:-	DARPA SAFE 74	Positive	I 4,[5],12:i:-	
Infantis	CLCB 510	Positive	Infantis	
Muenchen	CLCB 236	Positive	Muenchen	
Montevideo	ATCC 8387	Positive	Montevideo	
Braenderup	CLCB 7	Positive	Braenderup	
Thompson	CLCB 9	Positive	Thompson	
Saintpaul	CLCB 1038	Positive	Saintpaul	
Heidelberg	DARPA SAFE 3	Positive	Heidelberg	
Oranienburg	CLCB 18	Positive	Oranienburg	
Mississippi	CLCB 251	Positive	Mississippi	
Typhi	CLCB 268	Positive	Typhi	
Bareilly	ATCC 9115	Positive	Bareilly	
Berta	ATCC 8392	Positive	Berta	
Agona	CLCB 219	Positive	Agona	
Paratyphi B	ATCC 51962	Positive	Paratyphi B	
Anatum	ATCC 9270	Positive	Anatum	
No Spike	Not applicable	Negative	Not applicable	

^aCarcass rinse samples were artificially inoculated with 4 CFU of each serotype and enriched in CSM at 35°C for 24h. ^bClear Safety[™] Salmonella assay was used to detect serotypes of Salmonella enterica subsp. enterica

Figure 2: Serotyping Timelines

After enriching samples for 16-28h, automated targeted NGS provided serotyping results in 12h for a total time from sample-to-result of 28-40h. All other serotyping methods require at least 6 days to produce confirmed Salmonella isolates in addition to the time to perform the serotyping analysis (8). Times listed here are minimum as some strains may need longer incubation times and some steps may need to be repeated.

CONCLUSIONS

References

- (7) USDA Microbiology Laboratory Guidebook, 2023. https://www.fsis.usda.gov/sites/default/files/media_file/documents/MLG-4.13.pdf
- (8) Yoshida C, Gurnik S, Ahmad A, Blimkie T, Murphy SA, Kropinski AM, Nash JH. Evaluation of Molecular Methods for Identification of Salmonella Serovars. J Clin Microbiol. 2016 Aug;54(8):1992-8.

© 2023 Clear Labs Inc.

1559 Industrial Road San Carlos, CA 94070

Disclaimer:

Clear Safety[™] Salmonella is for Research Use Only (RUO) and is not intended for diagnostic purposes.

■ Clear Safety[™] Salmonella provided 100% accurate detection of Salmonella genus (251/251) and 100% accurate serotyping results (206/206) for serotypes within the scope of Clear Safety, with no false positives among 40 non-Salmonella strains

 Clear Safety[™] Salmonella provided 100% accurate
serotyping results from artificially contaminated chicken carcass rinse sample enrichments

 Targeted NGS can identify serotypes from bacterial communities, such as sample enrichments, eliminating the need for time consuming and labor-intensive steps of isolating Salmonella colonies

With the Clear Safety[™] platform, users only need to prepare samples and load the reagents and consumables. Sample lysis, PCR, library preparation and sequencing are done automatically without any user intervention

- (1) USDA-Food Safety Inspection Services: Proposed Regulatory Framework to Reduce Salmonella Illnesses Attributable to Poultry 2022.
- https://www.fsis.usda.gov/sites/default/files/media_file/documents/FINAL-Salmonella-Framework-10112022-508-edited.pdf (2) Pew Charitable Trust 2021 <u>https://www.pewtrusts.org/en/research-and-</u>
- analysis/data-visualizations/2021/12-charts-explore-americas-salmonellaproblem-and-steps-to-solve-it
- (3) Oscar T. Salmonella Prevalence Alone Is Not a Good Indicator of Poultry Food Safety. Risk Anal. 2021 Jan;41(1):110-130.
- (4) Oscar TP. Process risk model for *Salmonella* and ground chicken. J Appl Microbiol. 2019 Oct; 127(4): 1236-1245.
- (5) U.S. Government Accountability Office (GAO) GAO-14-744, 2014. Food Safety: USDA Needs to Strengthen Its Approach to Protecting Human Health from Pathogens in Poultry Products. https://www.gao.gov/products/gao-14-
- (6) CDC Salmonella. https://www.cdc.gov/salmonella/reportspubs/salmonellaatlas/serotyping-importance.html

Presented at: